Stochastic Symmetry-breaking in a Gaussian Hopfield-model

نویسندگان

  • Anton Bovier
  • Beat Niederhauser
چکیده

We study a “two-pattern” Hopfield model with Gaussian disorder. We find that there are infinitely many pure states at low temperatures in this model, and we find that the metastate is supported on an infinity of symmetric pairs of pure states. The origin of this phenomenon is the random breaking of a rotation symmetry of the distribution of the disorder variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuations of the Free Energy in the high temperature Hopfield Model

We consider the Hopfield model of size N and with p ∼ tN patterns, in the whole high temperature (paramagnetic) region. Our result is that the partition function has log-normal fluctuations. It is obtained by extending to the present model the method of the interpolating Brownian Motions used in [10] for the Sherrington-Kirkpatrick model. We view the load t of the memory as a dynamical paramete...

متن کامل

The Ashkin-Teller neural network near saturation

The thermodynamic and retrieval properties of the Ashkin-Teller neural network model storing an infinite number of patterns are examined in the replica-symmetric mean-field approximation. In particular, for linked patterns temperature-capacity phase diagrams are derived for different values of the two-neuron and four-neuron coupling strengths. This model can be considered as a particular non-tr...

متن کامل

Storage Capacity of Kernel Associative Memories

This contribution discusses the thermodynamic phases and storage capacity of an extension of the Hopfield-Little model of associative memory via kernel functions. The analysis is presented for the case of polynomial and Gaussian kernels in a replica symmetry ansatz. As a general result we found for both kernels that the storage capacity increases considerably compared to the Hopfield-Little model.

متن کامل

Bifurcation as the Source of Polymorphism

In this paper we present a symmetry breaking bifurcationbased analysis of a Lotka-Volterra model of competing populations. We describe conditions under which equilibria of the population model can be uninvadable by other phenotypes, which is a necessary condition for the solution to be evolutionarily relevant. We focus on the first branching process that occurs when a monomorphic population los...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998